Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
R Soc Open Sci ; 11(4): 231280, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38601028

RESUMO

Climate change is predicted to negatively impact calcification and change the structural integrity of biogenic carbonates, influencing their protective function. We assess the impacts of warming on the morphology and crystallography of Amphistegina lobifera, an abundant benthic foraminifera species in shallow environments. Specimens from a thermally disturbed field area, mimicking future warming, are about 50% smaller compared with a control location. Differences in the position of the ν1 Raman mode of shells between the sites, which serves as a proxy for Mg content and calcification temperature, indicate that calcification is negatively impacted when temperatures are below the thermal range facilitating calcification. To test the impact of thermal stress on the Young's modulus of calcite which contributes to structural integrity, we quantify elasticity changes in large benthic foraminifera by applying atomic force microscopy to a different genus, Operculina ammonoides, cultured under optimal and high temperatures. Building on these observations of size and the sensitivity analysis for temperature-induced change in elasticity, we used finite element analysis to show that structural integrity is increased with reduced size and is largely insensitive to calcite elasticity. Our results indicate that warming-induced dwarfism creates shells that are more resistant to fracture because they are smaller.

2.
Biomacromolecules ; 25(2): 715-728, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38271957

RESUMO

A gelled Pickering emulsion system was fabricated by first stabilizing linseed oil droplets in water with dialdehyde cellulose nanocrystals (DACNCs) and then cross-linking with cystamine. Cross-linking of the DACNCs was shown to occur by a reaction between the amine groups on cystamine and the aldehyde groups on the CNCs, causing gelation of the nanocellulose suspension. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy were used to characterize the cystamine-cross-linked CNCs (cysCNCs), demonstrating their presence. Transmission electron microscopy images evidenced that cross-linking between cysCNCs took place. This cross-linking was utilized in a linseed oil-in-water Pickering emulsion system, creating a novel gelled Pickering emulsion system. The rheological properties of both DACNC suspensions and nanocellulose-stabilized Pickering emulsions were monitored during the cross-linking reaction. Dynamic light scattering and confocal laser scanning microscopy (CLSM) of the Pickering emulsion before gelling imaged CNC-stabilized oil droplets along with isolated CNC rods and CNC clusters, which had not been adsorbed to the oil droplet surfaces. Atomic force microscopy imaging of the air-dried gelled Pickering emulsion also demonstrated the presence of free CNCs alongside the oil droplets and the cross-linked CNC network directly at the oil-water interface on the oil droplet surfaces. Finally, these gelled Pickering emulsions were mixed with poly(vinyl alcohol) solutions and fabricated into self-healing composite coating systems. These self-healing composite coatings were then scratched and viewed under both an optical microscope and a scanning electron microscope before and after self-healing. The linseed oil was demonstrated to leak into the scratches, healing the gap automatically and giving a practical approach for a variety of potential applications.


Assuntos
Cistamina , Nanopartículas , Emulsões/química , Óleo de Semente do Linho , Celulose/química , Nanopartículas/química , Água/química
3.
ACS Appl Mater Interfaces ; 15(38): 44711-44721, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37715711

RESUMO

Dual-emission fluorescence probes that provide high sensitivity are key for biomedical diagnostic applications. Nontoxic carbon dots (CDs) are an emerging alternative to traditional fluorescent probes; however, robust and reproducible synthetic strategies are still needed to access materials with controlled emission profiles and improved fluorescence quantum yields (FQYs). Herein, we report a practical and general synthetic strategy to access dual-emission CDs with FQYs as high as 0.67 and green/blue, yellow/blue, or red/blue excitation-dependent emission profiles using common starting materials such as citric acid, cysteine, and co-dopants to bias the synthetic pathway. Structural and physicochemical analysis using nuclear magnetic resonance, absorbance and fluorescence spectroscopy, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy in addition to transmission electron and atomic force microscopy (TEM and AFM) is used to elucidate the material's composition which is responsible for the unique observed photoluminescence properties. Moreover, the utility of the probes is demonstrated in the clinical setting by the synthesis of green/blue emitting antibody-CD conjugates which are used for the immunohistochemical staining of human brain tissues of glioblastoma patients, showing detection under two different emission channels.


Assuntos
Pontos Quânticos , Humanos , Pontos Quânticos/química , Carbono/química , Espectroscopia Fotoeletrônica , Corantes Fluorescentes/química , Espectroscopia de Infravermelho com Transformada de Fourier
4.
J Am Chem Soc ; 144(43): 19799-19812, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36260789

RESUMO

Micelleplexes show great promise as effective polymeric delivery systems for nucleic acids. Although studies have shown that spherical micelleplexes can exhibit superior cellular transfection to polyplexes, to date there has been no report on the effects of micelleplex morphology on cellular transfection. In this work, we prepared precision, length-tunable poly(fluorenetrimethylenecarbonate)-b-poly(2-(dimethylamino)ethyl methacrylate) (PFTMC16-b-PDMAEMA131) nanofiber micelleplexes and compared their properties and transfection activity to those of the equivalent nanosphere micelleplexes and polyplexes. We studied the DNA complexation process in detail via a range of techniques including cryo-transmission electron microscopy, atomic force microscopy, dynamic light scattering, and ζ-potential measurements, thereby examining how nanofiber micelleplexes form, as well the key differences that exist compared to nanosphere micelleplexes and polyplexes in terms of DNA loading and colloidal stability. The effects of particle morphology and nanofiber length on the transfection and cell viability of U-87 MG glioblastoma cells with a luciferase plasmid were explored, revealing that short nanofiber micelleplexes (length < ca. 100 nm) were the most effective delivery vehicle examined, outperforming nanosphere micelleplexes, polyplexes, and longer nanofiber micelleplexes as well as the Lipofectamine 2000 control. This study highlights the potential importance of 1D micelleplex morphologies for achieving optimal transfection activity and provides a fundamental platform for the future development of more effective polymeric nucleic acid delivery vehicles.


Assuntos
Nanofibras , Ácidos Nucleicos , Micelas , Transfecção , Polímeros , DNA
5.
Nanoscale ; 14(22): 8145-8152, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35616244

RESUMO

Direct measurements to determine the degree of surface coverage of nanoparticles by functional moieties are rare, with current strategies requiring a high level of expertise and expensive equipment. Here, a practical method to determine the ratio of the volume of the functionalisation layer to the particle volume based on measuring the refractive index of nanoparticles in suspension is proposed. As a proof of concept, this technique is applied to poly(methyl methacrylate) (PMMA) nanoparticles and semicrystalline carbon dots functionalised with different surface moieties, yielding refractive indices that are commensurate to those from previous literature and Mie theory. In doing so, it is demonstrated that this technique is able to optically detect differences in surface functionalisation or composition of nanometre-sized particles. This non-destructive and rapid method is well-suited for in situ industrial particle characterisation and biological applications.

6.
Nanoscale ; 14(18): 6930-6940, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35466987

RESUMO

The development of robust and reproducible synthetic strategies for the production of carbon dots (CDs) with improved fluorescence quantum yields and distinct emission profiles is of great relevance given the vast range of applications of CDs. The fundamental understanding at a molecular level of their formation mechanism, chemical structure and how these parameters are correlated to their photoluminescence (PL) properties is thus essential. In this study, we describe the synthesis and structural characterization of a range of CDs with distinct physico-chemical properties. The materials were prepared under three minutes of microwave irradiation using the same common starting materials (D-glucosamine hydrochloride 1 and ethylenediamine 2) but modifying the stoichiometry of the reagents. We show that small variation in reaction conditions leads to changes in the fluorescent behaviour of the CDs, especially in the selective enhancement of overlapped fluorescence bands. Structural analysis of the different CD samples suggested different reaction pathways during the CD formation and surface passivation, with the latter step being key to the observed differences. Moreover, we demonstrate that these materials have distinct reversible response to pH changes, which we can be attribute to different behaviour towards protonation/deprotonation events of distinct emission domains present within each nanomaterial. Our results highlight the importance of understanding the reaction pathways that lead to the formation of this carbon-based nanomaterials and how this can be exploited to develop tailored materials towards specific applications.

7.
J Am Chem Soc ; 144(2): 951-962, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34985896

RESUMO

Living crystallization-driven self-assembly of polymeric and molecular amphiphiles is of growing interest as a seeded growth route to uniform 1D, 2D, and more complex micellar nanoparticles with controlled dimensions and a range of potential applications. Although most studies have been performed using colloidally stable seeds in bulk solution, growth of block copolymer (BCP) nanofibers from seeds confined to a surface is attracting increased attention. Herein, we have used atomic force microscopy (AFM) to undertake detailed studies of the growth of BCP nanofibers from immobilized seeds located on a Si surface. Through initial ex situ AFM studies and in situ AFM video analysis in solution, we determined that growth occurred in four stages, whereby an initial surface-bound growth regime transitions to surface-limited growth. As the nanofiber length increases, surface influence is diminished as the newly grown micelle segment is no longer bound to the Si substrate. Finally, a surface-independent regime occurs where nanofiber growth continues into bulk solution. In addition to the anticipated nanofiber elongation, our studies revealed occasional examples of AFM tip-induced core fragmentation. In these cases, the termini of the newly formed fragments were also active to further growth. Furthermore, unidirectional growth was detected in cases where the seed was oriented at a significant angle with respect to the surface, thereby restricting unimer access to one terminus.

8.
J Am Chem Soc ; 143(15): 5805-5814, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33851530

RESUMO

Although micelles derived from the solution self-assembly of amphiphilic molecules and polymers have been prepared with a wide variety of shapes, examples with well-defined branched structures have remained elusive. We describe a divergent, directed self-assembly approach to low dispersity dendritic micelles with a high degree of structural perfection and tailorable branch numbers and generations. We use block copolymer amphiphiles as precursors and a crystallization-driven seeded growth approach whereby the termini of fiber-like micelles function as branching sites. Different dendrimeric generations are accessible by adjusting the ratio of added unimers to pre-existing seed micelles where the branch positions are determined by the reduced coronal chain grafting density on the surface of the micelle crystalline core. We demonstrate the spatially defined decoration of the assemblies with emissive nanoparticles and utility of the resulting hybrids as fluorescent sensors for anions where the dendritic architecture enables ultrahigh sensitivity.


Assuntos
Dendrímeros/química , Micelas , Ânions/química , Cristalização , Compostos Ferrosos/química , Limite de Detecção , Microscopia de Força Atômica , Polivinil/química , Pontos Quânticos/química , Silanos/química , Espectrometria de Fluorescência , Sulfetos/análise , Propriedades de Superfície
9.
Sensors (Basel) ; 21(9)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33925843

RESUMO

The increase in capabilities of Scanning Probe Microscopy (SPM) has resulted in a parallel increase in complexity that limits the use of this technique outside of specialised research laboratories. SPM automation could substantially expand its application domain, improve reproducibility and increase throughput. Here, we present a bottom-up design in which the combination of positioning stages, orientation, and detection of the probe produces an SPM design compatible with full automation. The resulting probe microscope achieves sub-femtonewton force sensitivity whilst preserving low mechanical drift (2.0±0.2 nm/min in-plane and 1.0±0.1 nm/min vertically). The additional integration of total internal reflection microscopy, and the straightforward operations in liquid, make this instrument configuration particularly attractive to future biomedical applications.


Assuntos
Microscopia de Varredura por Sonda , Microscopia , Fenômenos Mecânicos , Reprodutibilidade dos Testes
10.
Small ; 17(10): e2100472, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33590708

RESUMO

The design and assembly of peptide-based materials has advanced considerably, leading to a variety of fibrous, sheet, and nanoparticle structures. A remaining challenge is to account for and control different possible supramolecular outcomes accessible to the same or similar peptide building blocks. Here a de novo peptide system is presented that forms nanoparticles or sheets depending on the strategic placement of a "disulfide pin" between two elements of secondary structure that drive self-assembly. Specifically, homodimerizing and homotrimerizing de novo coiled-coil α-helices are joined with a flexible linker to generate a series of linear peptides. The helices are pinned back-to-back, constraining them as hairpins by a disulfide bond placed either proximal or distal to the linker. Computational modeling indicates, and advanced microscopy shows, that the proximally pinned hairpins self-assemble into nanoparticles, whereas the distally pinned constructs form sheets. These peptides can be made synthetically or recombinantly to allow both chemical modifications and the introduction of whole protein cargoes as required.


Assuntos
Nanopartículas , Peptídeos , Fenômenos Biofísicos , Estrutura Secundária de Proteína , Proteínas
11.
Nat Chem ; 12(12): 1150-1156, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33219362

RESUMO

The creation of efficient artificial systems that mimic natural photosynthesis represents a key current challenge. Here, we describe a high-performance recyclable photocatalytic core-shell nanofibre system that integrates a cobalt catalyst and a photosensitizer in close proximity for hydrogen production from water using visible light. The composition, microstructure and dimensions-and thereby the catalytic activity-of the nanofibres were controlled through living crystallization-driven self-assembly. In this seeded growth strategy, block copolymers with crystallizable core-forming blocks and functional coronal segments were coassembled into low-dispersity, one-dimensional architectures. Under optimized conditions, the nanofibres promote the photocatalytic production of hydrogen from water with an overall quantum yield for solar energy conversion to hydrogen gas of ~4.0% (with a turnover number of >7,000 over 5 h, a frequency of >1,400 h-1 and a H2 production rate of >0.327 µmol h-1 with 1.34 µg of catalytic polymer (that is, >244,300 µmol h-1 g-1 of catalytic polymer)).

12.
J Am Chem Soc ; 142(31): 13469-13480, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32594739

RESUMO

The creation of organic heterojunctions from conjugated polymers on the nanoscale has attracted recent attention as a consequence of their considerable potential in optoelectronic devices. Herein, we report proof-of-concept results on a versatile synthetic strategy to access various linearly segmented nanowire heterojunctions with controlled dimensions using the seeded growth "living crystallization-driven self-assembly" method followed by a secondary crystallization step. Specifically, we describe the creation of coaxial and also segmented coaxial B-A-B and A-B-A nanowires with a solvophilic poly(ethylene glycol) (PEG) corona, an inner crystalline core that consists of poly(di-n-hexylfluorene) (PDHF), which functions as a donor, and an outer crystalline core of poly(3-(2'-ethylhexyl)thiophene) (P3EHT), which acts as an acceptor. The latter is present either along the entire nanowire or solely in the central or terminal segments. These assemblies were created by seeded growth of two types of π-conjugated polymeric building blocks, the triblock copolymer PDHF-b-P3EHT-b-PEG and the diblock copolymer PDHF-b-PEG, by using fiber-like seeds derived from either material. The nanowires with both solid-state donor and acceptor blocks exhibit Förster resonance energy transfer (FRET) from the PDHF inner core to the P3EHT outer core which was characterized by fluorescence spectroscopy and laser confocal scanning fluorescence microscopy (LCSM). The FRET in the solid-state coaxial heterojunctions with an inner PDHF core and an outer P3EHT core was enhanced relative to the directly analogous system in which the P3EHT block was solvated.


Assuntos
Nanofios/química , Polímeros/síntese química , Cristalização , Estrutura Molecular , Tamanho da Partícula , Polímeros/química , Propriedades de Superfície
13.
J Am Chem Soc ; 141(48): 19088-19098, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31657915

RESUMO

Fiber-like micelles based on biodegradable and biocompatible polymers exhibit considerable promise for applications in nanomedicine, but until recently no convenient methods were available to prepare samples with uniform and controllable dimensions and spatial control of functionality. "Living" crystallization-driven self-assembly (CDSA) is a seeded growth method of growing importance for the preparation of uniform 1D and 2D core-shell nanoparticles from a range of crystallizable polymeric amphiphiles. However, in the case of poly(l-lactide) (PLLA), arguably the most widely utilized biodegradable polymer as the crystallizable core-forming block, the controlled formation of uniform fiber-like structures over a substantial range of lengths by "living" CDSA has been a major challenge. Herein, we demonstrate that via simple modulation of the solvent conditions via the addition of trifluoroethanol (TFE), DMSO, DMF and acetone, uniform fiber-like nanoparticles from PLLA diblock copolymers with controlled lengths up to 1 µm can be prepared. The probable mechanism involves improved unimer solvation by a reduction of hydrogen bonding interactions among PLLA chains. We provide evidence that this minimizes undesirable unimer aggregation which otherwise favors self-nucleation that competes with epitaxial crystallization from seed termini. This approach has also allowed the formation of well-defined segmented block comicelles with PLLA cores via the sequential seeded-growth of PLLA block copolymers with different corona-forming blocks.


Assuntos
Resinas Acrílicas/química , Micelas , Nanopartículas/química , Poliésteres/química , Cristalização , Ligação de Hidrogênio , Nanopartículas/ultraestrutura , Tamanho da Partícula , Solubilidade , Solventes
14.
Sci Rep ; 9(1): 376, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30675000

RESUMO

Seeded polymerisation of proteins forming amyloid fibres and their spread in tissues has been implicated in the pathogenesis of multiple neurodegenerative diseases: so called "prion-like" mechanisms. While ex vivo mammalian prions, composed of multichain assemblies of misfolded host-encoded prion protein (PrP), act as lethal infectious agents, PrP amyloid fibrils produced in vitro generally do not. The high-resolution structure of authentic infectious prions and the structural basis of prion strain diversity remain unknown. Here we use cryo-electron microscopy and atomic force microscopy to examine the structure of highly infectious PrP rods isolated from mouse brain in comparison to non-infectious recombinant PrP fibrils generated in vitro. Non-infectious recombinant PrP fibrils are 10 nm wide single fibres, with a double helical repeating substructure displaying small variations in adhesive force interactions across their width. In contrast, infectious PrP rods are 20 nm wide and contain two fibres, each with a double helical repeating substructure, separated by a central gap of 8-10 nm in width. This gap contains an irregularly structured material whose adhesive force properties are strikingly different to that of the fibres, suggestive of a distinct composition. The structure of the infectious PrP rods, which cause lethal neurodegeneration, readily differentiates them from all other protein assemblies so far characterised in other neurodegenerative diseases.


Assuntos
Amiloide/química , Proteínas Priônicas/química , Príons/química , Amiloide/ultraestrutura , Animais , Mamíferos , Microscopia de Força Atômica , Príons/ultraestrutura , Conformação Proteica , Dobramento de Proteína , Proteínas Recombinantes , Relação Estrutura-Atividade
15.
J Am Chem Soc ; 140(49): 17127-17140, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30392357

RESUMO

Fiber-like block copolymer (BCP) micelles offer considerable potential for a variety of applications; however, uniform samples of controlled length and with spatially tailored chemistry have not been accessible. Recently, a seeded growth method, termed "living" crystallization-driven self-assembly (CDSA), has been developed to allow the formation of 1D micelles and block comicelles of precisely controlled dimensions from BCPs with a crystallizable segment. An expansion of the range of core-forming blocks that participate in living CDSA is necessary for this technique to be compatible with a broad range of applications. Few examples currently exist of well-defined, water-dispersible BCP micelles prepared using this approach, especially from biocompatible and biodegradable polymers. Herein, we demonstrate that BCPs containing a crystallizable polycarbonate, poly(spiro[fluorene-9,5'-[1,3]-dioxan]-2'-one) (PFTMC), can readily undergo living CDSA processes. PFTMC- b-poly(ethylene glycol) (PEG) BCPs with PFTMC:PEG block ratios of 1:11 and 1:25 were shown to undergo living CDSA to form near monodisperse fiber-like micelles of precisely controlled lengths of up to ∼1.6 µm. Detailed structural characterization of these micelles by TEM, AFM, SAXS, and WAXS revealed that they comprise a crystalline, chain-folded PFTMC core with a rectangular cross-section that is surrounded by a solvent swollen PEG corona. PFTMC- b-PEG fiber-like micelles were shown to be dispersible in water to give colloidally stable solutions. This allowed an assessment of the toxicity of these structures toward WI-38 and HeLa cells. From these experiments, we observed no discernible cytotoxicity from a sample of 119 nm fiber-like micelles to either healthy (WI-38) or cancerous (HeLa) cell types. The living CDSA process was extended to PFTMC- b-poly(2-vinylpyridine) (P2VP), and addition of this BCP to PFTMC- b-PEG seed micelles led to the formation of well-defined segmented fibers with spatially localized coronal chemistries.

16.
iScience ; 9: 36-46, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30384132

RESUMO

The performance of Cu2ZnSn(S,Se)4 thin-film solar cells, commonly referred to as kesterite or CZTSSe, is limited by open-circuit voltage (VOC) values less than 60% of the maximum theoretical limit. In the present study, we employ energy-filtered photoemission microscopy to visualize nanoscale shunting paths in solution-processed CZTSSe films, which limit the VOC of cells to approximately 400 mV. These studies unveil areas of local effective work function (LEWF) narrowly distributed around 4.9 eV, whereas other portions show hotspots with LEWF as low as 4.2 eV. Localized valence band spectra and density functional theory calculations allow rationalizing the LEWF maps in terms of the CZTSSe effective work function broadened by potential energy fluctuations and nanoscale Sn(S,Se) phases.

17.
Artigo em Inglês | MEDLINE | ID: mdl-30249781

RESUMO

Collagen is the major structural component of cartilage, and mutations in the genes encoding type XI collagen are associated with severe skeletal dysplasias (fibrochondrogenesis and Stickler syndrome) and early-onset osteoarthritis (OA). The impact of the lack of type XI collagen on cell behaviour and mechanical performance during skeleton development is unknown. We studied a zebrafish mutant for col11a2 and evaluated cartilage, bone development and mechanical properties to address this. We show that in col11a2 mutants, type II collagen is made but is prematurely degraded in maturing cartilage and ectopically expressed in the joint. These changes are correlated with increased stiffness of both bone and cartilage; quantified using atomic force microscopy. In the mutants, the skeletal rudiment terminal region in the jaw joint is broader and the interzone smaller. These differences in shape and material properties impact on joint function and mechanical performance, which we modelled using finite element analyses. Finally, we show that col11a2 heterozygous carriers reach adulthood but show signs of severe early-onset OA. Taken together, our data demonstrate a key role for type XI collagen in maintaining the properties of cartilage matrix; which when lost leads to alterations to cell behaviour that give rise to joint pathologies.This article is part of the Theo Murphy meeting issue 'Mechanics of development'.


Assuntos
Artrite/fisiopatologia , Colágeno Tipo XI/fisiologia , Articulações/fisiopatologia , Osteoporose/fisiopatologia , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra , Animais , Artrite/genética , Fenômenos Biomecânicos , Colágeno Tipo XI/genética , Modelos Animais de Doenças , Osteoporose/genética , Proteínas de Peixe-Zebra/genética
18.
Chemistry ; 24(58): 15556-15565, 2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30047561

RESUMO

The controlled solution self-assembly of an amphiphilic perylene diimide (PDI), with a hydrophobic perylene core and hydrophilic imide substituents with polydisperse oligo(ethylene glycol) (OEG) tethers is presented. It was possible, by a seeded-growth mechanism, to form colloidally stable, one-dimensional fibres with controllable lengths (from 400 to 1700 nm) and low dispersities (1.19-1.29) via a living supramolecular polymerisation process. Under the solvent conditions used, it was found that molecularly dissolved material (unimer) was present in samples of the fibre-like supramolecular assemblies. The free unimer may be present in a conformationally derived kinetically trapped state and/or may represent a more soluble PDI fraction with longer hydrophilic tethers. Significantly, it was also possible to form segmented supramolecular block copolymers by the addition of PDI unimer to chemically distinct PDI seeds, yielding fibres with controlled lengths. These results represent a significant advance in the ability to form PDI-based supramolecular polymers with precisely controlled lengths and architectures.

19.
Nanoscale ; 10(29): 13908-13912, 2018 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-29999508

RESUMO

Biomolecule functionalisation of carbon nano-dots (CDs) greatly enhances their biocompatibility and applicability, however, little is known about their molecular structure. Using an arsenal of spectroscopic and analytical techniques, we provide new insights into the physical and electronic structure of uncoated and glycan-functionalised CDs. Our studies reveal that surface functionalisation does not always result in a homogenous corona surrounding the core, and the choice of carbohydrate significantly affects the electronic structure of the surface CD states. Further, the average surface coverage of an ensemble of CDs can be probed via transient absorption spectroscopy. These findings have implications for CDs targeted at interactions with biological systems or local sensors.

20.
J Am Chem Soc ; 140(23): 7222-7231, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29847112

RESUMO

Chiral polymers are ubiquitous in nature, and the self-assembly of chiral materials is a field of widespread interest. In this paper, we describe the formation of chiral metallopolymers based on poly(cobaltoceniumethylene) ([PCE] n+), which have been prepared through oxidation of poly(cobaltocenylethylene) (PCE) in the presence of enantiopure N-acyl-amino-acid-derived anionic surfactants, such as N-palmitoyl-l-alanine (C16-l-Ala) and N-palmitoyl-d-alanine (C16-d-Ala). It is postulated that the resulting metallopolymer complexes [PCE][C16-l/d-Ala] n contain close ionic contacts, and exhibit chirality through the axially chiral ethylenic CH2-CH2 bridges, leading to interaction of the chromophoric [CoCp2]+ units through chiral space. The steric influence of the long palmitoyl (C16) surfactant tail is key for the transmission of chirality to the polymer, and results in a brushlike amphiphilic macromolecular structure that also affords solubility in polar organic solvents (e.g., EtOH, THF). Upon dialysis of these solutions into water, the hydrophobic palmitoyl surfactant substituents aggregate and the complex assembles into superhelical ribbons with identifiable "handedness", indicating the transmission of chirality from the molecular surfactant to the micrometer length scale, via the macromolecular complex.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...